
PROGRAMMING GPU-ACCELERATED OPENPOWER
SYSTEMSWITH OPENACC
GPU TECHNOLOGY CONFERENCE 2018
26 March 2018 Andreas Herten Forschungszentrum Jülich, Jülich Supercomputing Centre

Member of the Helmholtz Association

Overview, Outline
What you will learn today

What’s special about
GPU-equipped POWER systems
Parallelization strategies with
OpenACC
OpenACC on CPU, GPU, GPUs
All in 120 minutes

What you will not learn today
Analyze program in-detail
Strategies for complex programs
How to leave the matrix

Member of the Helmholtz Association 26 March 2018 Slide 1 77

Overview, Outline
What you will learn today

What’s special about
GPU-equipped POWER systems
Parallelization strategies with
OpenACC
OpenACC on CPU, GPU, GPUs
All in 120 minutes

What you will not learn today
Analyze program in-detail
Strategies for complex programs
How to leave the matrix

Introduction
POWER
Login E

OpenACC Introduction
OpenACC on CPU E

OpenACC: GPU Optimizations
OpenACC with GPUs E

MPI 101
OpenACC, GPUs, and MPI E

Hands-on
Lecture

Extra

Member of the Helmholtz Association 26 March 2018 Slide 1 77

Overview, Outline
What you will learn today

What’s special about
GPU-equipped POWER systems
Parallelization strategies with
OpenACC
OpenACC on CPU, GPU, GPUs
All in 120 minutes

What you will not learn today
Analyze program in-detail
Strategies for complex programs
How to leave the matrix

Introduction
OpenPOWER

Minsky, POWER8
Newell, POWER9
Using JURON

OpenACC Introduction
About OpenACC
Modus Operandi
OpenACC’s Models
Parallelization Workflow

First Steps in OpenACC
Example Program
Identify Parallelism
Parallelize Loops

parallel
loops
kernels

OpenACC on the GPU
Compiling on GPU
Data Locality

copy
data
enter data

OpenACC on Multiple GPUs
MPI 101
Jacobi MPI Strategy
Asynchronous

Conclusions, Summary
Appendix
List of Tasks

Member of the Helmholtz Association 26 March 2018 Slide 1 77

Jülich
Jülich Supercomputing Centre

Forschungszentrum Jülich: One of largest research centers in Europe
Jülich Supercomputing Centre: Host of and research in supercomputers
JUQUEEN BlueGene/Q system, †Mar 2018, then: JUWELS
JURECA Intel x86 system; some GPUs, many KNLs

etc DEEP, QPACE, JULIA, JURON
Me: Physicist, now at POWER Acceleration and Design Centre and NVIDIA Application Lab

Member of the Helmholtz Association 26 March 2018 Slide 2 77

Jülich
Jülich Supercomputing Centre

Forschungszentrum Jülich: One of largest research centers in Europe
Jülich Supercomputing Centre: Host of and research in supercomputers
JUQUEEN BlueGene/Q system, †Mar 2018, then: JUWELS
JURECA Intel x86 system; some GPUs, many KNLs

etc DEEP, QPACE, JULIA, JURON
Me: Physicist, now at POWER Acceleration and Design Centre and NVIDIA Application Lab

Member of the Helmholtz Association 26 March 2018 Slide 2 77

OpenPOWER Foundation

Platform for collaboration around POWER processor architecture
Started by IBM, NVIDIA, manymore (now> 250 members)
Objectives

Licensing of processor architecture to partners
Collaborate on system extension
Open-Source Software

Example technology: NVLink, fast GPU-CPU interconnect

→ https://openpowerfoundation.org/

Member of the Helmholtz Association 26 March 2018 Slide 3 77

https://openpowerfoundation.org/

Minsky System
IBM's S822LC server, codenameMinsky
2 IBM POWER8NVL CPUs, 4 NVIDIA Tesla P100 GPUs

POWER8
CPU

System
Memory

P100
GPU

P100
GPU

GPU
Memory

GPU
Memory

115GB/s

2× 40GB/s

720GB/s

POWER8
CPU

System
Memory

P100
GPU

P100
GPU

GPU
Memory

GPU
Memory

115GB/s

2× 40GB/s

720GB/s

Member of the Helmholtz Association 26 March 2018 Slide 4 77

System Core Numbers

POWER8 CPU
2 sockets, each 10 cores, each 8× SMT

2.5GHz to 5 GHz; 8 FLOP/Cycle/Core
256GBmemory (115 GB/s)
L4 $ per socket: 4× 16MB (Buffer Chip)
L3, L2, L1 $ per core: 8MB, 512 kB, 64 kB

0.5 TFLOP/s

P100 GPU
56 Streaming Multiprocessors (SMs)
64 FLOP/Cycle/SM
16GB (720 GB/s)
L2 $: 4MB
Shared Memory: 64 kB

5 TFLOP/s

POWER8
CPU

System
Memory

P100
GPU

P100
GPU

GPU
Memory

GPU
Memory

115GB/s

2× 40GB/s

720GB/s

POWER8
CPU

System
Memory

P100
GPU

P100
GPU

GPU
Memory

GPU
Memory

115GB/s

2× 40GB/s

720GB/s

N
VL

in
k
(4
0
GB

/
s)

Member of the Helmholtz Association 26 March 2018 Slide 5 77

System Core Numbers
POWER8 CPU

0.5 TFLOP/s

P100 GPU

5 TFLOP/s

N
VL

in
k
(4
0
GB

/
s)

Member of the Helmholtz Association 26 March 2018 Slide 5 77

JURON
JURON (Juelich + Neuron)

18 Minsky nodes (≈350 TFLOP/s)
For Human Brain Project (HBP), but not only
Prototype system, together with JULIA (KNL-based)
Access via Jupyter Hub or SSH

juronc01

juronc02

juronc03

juronc04

juronc05
juronc06

juronc07
juronc08 juronc09 juronc10 juronc11

juronc12
juronc13

juronc14

juronc15

juronc16

juronc17

juronc18

juron1-adm
 









Member of the Helmholtz Association 26 March 2018 Slide 6 77

JURON
JURON (Juelich + Neuron)

18 Minsky nodes (≈350 TFLOP/s)
For Human Brain Project (HBP), but not only
Prototype system, together with JULIA (KNL-based)
Access via Jupyter Hub or SSH

juronc01

juronc02

juronc03

juronc04

juronc05
juronc06

juronc07
juronc08 juronc09 juronc10 juronc11

juronc12
juronc13

juronc14

juronc15

juronc16

juronc17

juronc18

juron1-adm
 









Member of the Helmholtz Association 26 March 2018 Slide 6 77

Newell
Successor ofMinsky (AC922 instead of S822LC)
POWER9 instead of POWER8, 3 (2) Voltas instead of 2 Pascals, NVLink 2 instead of NVLink 1

→ Faster memory bandwidths, more FLOP/s, smarter NVLink

POWER9
CPU

System
Memory

V100
GPU

V100
GPU

V100
GPU

GPU
Memory

GPU
Memory

GPU
Memory

120GB/s

2× 50GB/s

900GB/s

POWER9
CPU

System
Memory

V100
GPU

V100
GPU

V100
GPU

GPU
Memory

GPU
Memory

GPU
Memory

120GB/s

2× 50GB/s

900GB/s

64GB/s

→ Appendix 1, 2

Tesla V100

80 SMs
FP32, FP64 cores per SM same as Pascal⇒
7.5 TFLOP (FP64)/ sec
8 Tensor Cores per SM⇒ 120 TFLOP (FP16)/ sec
NVLink 2: Cache coherence, …; CPU Address Translation
Service

Member of the Helmholtz Association 26 March 2018 Slide 7 77

Summit

New supercomputer at Oak
Ridge National Lab
4600 Newell-like nodes
> 200 PFLOP/s
performance
Maybe the world’s fastest
supercomputer!
Also: Sierra at Lawrence
Livermore National
Laboratory

Member of the Helmholtz Association 26 March 2018 Slide 8 77

https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://computation.llnl.gov/computers/sierra

Using JURON
A gentle start

Task 1: JURON

Website of Lab: http://bit.ly/gtc18-openacc
Log in to JURON via http://jupyter-jsc.fz-juelich.de

Access via Jupyter Lab (no Notebooks, but Terminal)
Login from slip of paper (»Workshop password«)
Click through to launch Jupyter Lab instance on JURON
Start Terminal, browse to source files, view slides, …

Directory of tasks cd $HOME/Tasks/Tasks/

Solutions are always given! You decide when to look
Edit files with Jupyter’s source code editor (just open .c file)

? Howmany cores are on a compute node? Howmany CUDA cores? See README.md

TASK 1

Member of the Helmholtz Association 26 March 2018 Slide 9 77

http://bit.ly/gtc18-openacc
http://jupyter-jsc.fz-juelich.de

Using JURON
A gentle start

Task 1: JURON

Website of Lab: http://bit.ly/gtc18-openacc
Log in to JURON via http://jupyter-jsc.fz-juelich.de

Access via Jupyter Lab (no Notebooks, but Terminal)
Login from slip of paper (»Workshop password«)
Click through to launch Jupyter Lab instance on JURON
Start Terminal, browse to source files, view slides, …

Directory of tasks cd $HOME/Tasks/Tasks/

Solutions are always given! You decide when to look
Edit files with Jupyter’s source code editor (just open .c file)

? Howmany cores are on a compute node? Howmany CUDA cores? See README.md

TASK 1

bit.ly/gtc18-openacc

Member of the Helmholtz Association 26 March 2018 Slide 9 77

http://bit.ly/gtc18-openacc
http://jupyter-jsc.fz-juelich.de
http://bit.ly/gtc18-openacc

Using JURON
A gentle start

Task 1: JURON

Website of Lab: http://bit.ly/gtc18-openacc
Log in to JURON via http://jupyter-jsc.fz-juelich.de

Access via Jupyter Lab (no Notebooks, but Terminal)
Login from slip of paper (»Workshop password«)
Click through to launch Jupyter Lab instance on JURON
Start Terminal, browse to source files, view slides, …

Directory of tasks cd $HOME/Tasks/Tasks/

Solutions are always given! You decide when to look
Edit files with Jupyter’s source code editor (just open .c file)

? Howmany cores are on a compute node? Howmany CUDA cores? See README.md

TASK 1

Member of the Helmholtz Association 26 March 2018 Slide 9 77

http://bit.ly/gtc18-openacc
http://jupyter-jsc.fz-juelich.de

Using JURON
A gentle start

Task 1: JURON

Website of Lab: http://bit.ly/gtc18-openacc
Log in to JURON via http://jupyter-jsc.fz-juelich.de

Access via Jupyter Lab (no Notebooks, but Terminal)
Login from slip of paper (»Workshop password«)
Click through to launch Jupyter Lab instance on JURON
Start Terminal, browse to source files, view slides, …

Directory of tasks cd $HOME/Tasks/Tasks/

Solutions are always given! You decide when to look
Edit files with Jupyter’s source code editor (just open .c file)

? Howmany cores are on a compute node? Howmany CUDA cores? See README.md

TASK 1

Member of the Helmholtz Association 26 March 2018 Slide 9 77

http://bit.ly/gtc18-openacc
http://jupyter-jsc.fz-juelich.de

Using JURON
A gentle start

Task 1: JURON

Website of Lab: http://bit.ly/gtc18-openacc
Log in to JURON via http://jupyter-jsc.fz-juelich.de

Access via Jupyter Lab (no Notebooks, but Terminal)
Login from slip of paper (»Workshop password«)
Click through to launch Jupyter Lab instance on JURON
Start Terminal, browse to source files, view slides, …

Directory of tasks cd $HOME/Tasks/Tasks/

Solutions are always given! You decide when to look
Edit files with Jupyter’s source code editor (just open .c file)

? Howmany cores are on a compute node? Howmany CUDA cores? See README.md

TASK 1

Member of the Helmholtz Association 26 March 2018 Slide 9 77

http://bit.ly/gtc18-openacc
http://jupyter-jsc.fz-juelich.de

Using JURON
A gentle start

Task 1: JURON

Website of Lab: http://bit.ly/gtc18-openacc
Log in to JURON via http://jupyter-jsc.fz-juelich.de

Access via Jupyter Lab (no Notebooks, but Terminal)
Login from slip of paper (»Workshop password«)
Click through to launch Jupyter Lab instance on JURON
Start Terminal, browse to source files, view slides, …

Directory of tasks cd $HOME/Tasks/Tasks/

Solutions are always given! You decide when to look
Edit files with Jupyter’s source code editor (just open .c file)

? Howmany cores are on a compute node? Howmany CUDA cores? See README.md

TASK 1

Member of the Helmholtz Association 26 March 2018 Slide 9 77

http://bit.ly/gtc18-openacc
http://jupyter-jsc.fz-juelich.de

Using JURON
A gentle start

Task 1: JURON

Website of Lab: http://bit.ly/gtc18-openacc
Log in to JURON via http://jupyter-jsc.fz-juelich.de

Access via Jupyter Lab (no Notebooks, but Terminal)
Login from slip of paper (»Workshop password«)
Click through to launch Jupyter Lab instance on JURON
Start Terminal, browse to source files, view slides, …

Directory of tasks cd $HOME/Tasks/Tasks/

Solutions are always given! You decide when to look
Edit files with Jupyter’s source code editor (just open .c file)

? Howmany cores are on a compute node? Howmany CUDA cores? See README.md

TASK 1

Member of the Helmholtz Association 26 March 2018 Slide 9 77

http://bit.ly/gtc18-openacc
http://jupyter-jsc.fz-juelich.de

Using JURON
A gentle start

Task 1: JURON

Website of Lab: http://bit.ly/gtc18-openacc
Log in to JURON via http://jupyter-jsc.fz-juelich.de

Access via Jupyter Lab (no Notebooks, but Terminal)
Login from slip of paper (»Workshop password«)
Click through to launch Jupyter Lab instance on JURON
Start Terminal, browse to source files, view slides, …

Directory of tasks cd $HOME/Tasks/Tasks/

Solutions are always given! You decide when to look
Edit files with Jupyter’s source code editor (just open .c file)

? Howmany cores are on a compute node? Howmany CUDA cores? See README.md

TASK 1

Member of the Helmholtz Association 26 March 2018 Slide 9 77

http://bit.ly/gtc18-openacc
http://jupyter-jsc.fz-juelich.de

Using JURON
A gentle start

Task 1: JURON

Website of Lab: http://bit.ly/gtc18-openacc
Log in to JURON via http://jupyter-jsc.fz-juelich.de

Access via Jupyter Lab (no Notebooks, but Terminal)
Login from slip of paper (»Workshop password«)
Click through to launch Jupyter Lab instance on JURON
Start Terminal, browse to source files, view slides, …

Directory of tasks cd $HOME/Tasks/Tasks/

Solutions are always given! You decide when to look
Edit files with Jupyter’s source code editor (just open .c file)

? Howmany cores are on a compute node? Howmany CUDA cores? See README.md

TASK 1

Member of the Helmholtz Association 26 March 2018 Slide 9 77

http://bit.ly/gtc18-openacc
http://jupyter-jsc.fz-juelich.de

Using JURON
A gentle start

Task 1: JURON

Website of Lab: http://bit.ly/gtc18-openacc
Log in to JURON via http://jupyter-jsc.fz-juelich.de

Access via Jupyter Lab (no Notebooks, but Terminal)
Login from slip of paper (»Workshop password«)
Click through to launch Jupyter Lab instance on JURON
Start Terminal, browse to source files, view slides, …

Directory of tasks cd $HOME/Tasks/Tasks/

Solutions are always given! You decide when to look
Edit files with Jupyter’s source code editor (just open .c file)

? Howmany cores are on a compute node? Howmany CUDA cores? See README.md

TASK 1

Member of the Helmholtz Association 26 March 2018 Slide 9 77

http://bit.ly/gtc18-openacc
http://jupyter-jsc.fz-juelich.de

Using JURON
A gentle start

Task 1: JURON

Website of Lab: http://bit.ly/gtc18-openacc
Log in to JURON via http://jupyter-jsc.fz-juelich.de

Access via Jupyter Lab (no Notebooks, but Terminal)
Login from slip of paper (»Workshop password«)
Click through to launch Jupyter Lab instance on JURON
Start Terminal, browse to source files, view slides, …

Directory of tasks cd $HOME/Tasks/Tasks/

Solutions are always given! You decide when to look
Edit files with Jupyter’s source code editor (just open .c file)

? Howmany cores are on a compute node? Howmany CUDA cores? See README.md

TASK 1

Member of the Helmholtz Association 26 March 2018 Slide 9 77

http://bit.ly/gtc18-openacc
http://jupyter-jsc.fz-juelich.de

Using JURON
A gentle start

Task 1: JURON

Website of Lab: http://bit.ly/gtc18-openacc
Log in to JURON via http://jupyter-jsc.fz-juelich.de

Access via Jupyter Lab (no Notebooks, but Terminal)
Login from slip of paper (»Workshop password«)
Click through to launch Jupyter Lab instance on JURON
Start Terminal, browse to source files, view slides, …

Directory of tasks cd $HOME/Tasks/Tasks/

Solutions are always given! You decide when to look
Edit files with Jupyter’s source code editor (just open .c file)

? Howmany cores are on a compute node? Howmany CUDA cores? See README.md

TASK 1

Member of the Helmholtz Association 26 March 2018 Slide 9 77

http://bit.ly/gtc18-openacc
http://jupyter-jsc.fz-juelich.de

Using JURON
Somany cores!

$ make run
bsub -Is -U gtc lscpu
[...]
CPU(s): 160
[...]
module load cuda cuda-samples && \
bsub -Is -R "rusage[ngpus_shared=1]" -U gtc deviceQuery
[...]
Device 0: "Tesla P100-SXM2-16GB"
CUDA Driver Version / Runtime Version 9.1 / 9.1
CUDA Capability Major/Minor version number: 6.0
Total amount of global memory: 16276 MBytes (17066885120 bytes)
(56) Multiprocessors, (64) CUDA Cores/MP: 3584 CUDA Cores
[...]

→ Total number of (totally different) cores: 160+ (4× 3584) = 14 496
Member of the Helmholtz Association 26 March 2018 Slide 10 77

OpenACC Introduction

Member of the Helmholtz Association 26 March 2018 Slide 11 77

Primer on GPU Computing

Application

Libraries Directives
Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

Member of the Helmholtz Association 26 March 2018 Slide 12 77

Primer on GPU Computing

Application

Libraries Directives
Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

Member of the Helmholtz Association 26 March 2018 Slide 12 77

Primer on GPU Computing

Application

Libraries Directives
Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

Member of the Helmholtz Association 26 March 2018 Slide 12 77

Primer on GPU Computing

Application

Libraries Directives
Programming
Languages

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

Member of the Helmholtz Association 26 March 2018 Slide 12 77

Primer on GPU Computing

Application

Libraries Directives
Programming
LanguagesOpenACC

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

Member of the Helmholtz Association 26 March 2018 Slide 12 77

About OpenACC
History
2011 OpenACC 1.0 specification is released

NVIDIA, Cray, PGI, CAPS
2013 OpenACC 2.0: More functionality, portability
2015 OpenACC 2.5: Enhancements, clarifications
2017 OpenACC 2.6: Deep copy, …

→ https://www.openacc.org/ (see also: Best practice guide)

Support
Compiler: PGI, GCC, Cray, Sunway
Languages: C/C++, Fortran

Member of the Helmholtz Association 26 March 2018 Slide 13 77

https://www.openacc.org/sites/default/files/inline-files/OpenACC_1_0_specification.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC_2_0_specification.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC_2pt5.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC.2.6.final.pdf
https://www.openacc.org/
http://www.openacc.org/sites/default/files/inline-files/OpenACC_Programming_Guide_0.pdf

Open{MP↔ACC}
Everything’s connected

OpenACCmodeled after OpenMP …
…but specific for accelerators
Might eventually be absorbed into OpenMP
But OpenMP>4.0 also has offloading feature
OpenACCmore descriptive, OpenMPmore prescriptive
Basic principle same: Fork/join model
Master thread launches parallel child threads; merge after execution

master masterfo
rk

parallel

jo
in

OpenMP

master masterfo
rk

parallel

jo
in

OpenACC

Member of the Helmholtz Association 26 March 2018 Slide 14 77

Open{MP↔ACC}
Everything’s connected

OpenACCmodeled after OpenMP …
…but specific for accelerators
Might eventually be absorbed into OpenMP
But OpenMP>4.0 also has offloading feature
OpenACCmore descriptive, OpenMPmore prescriptive
Basic principle same: Fork/join model
Master thread launches parallel child threads; merge after execution

master masterfo
rk

parallel
jo
in

OpenMP

master masterfo
rk

parallel

jo
in

OpenACC

Member of the Helmholtz Association 26 March 2018 Slide 14 77

Open{MP↔ACC}
Everything’s connected

OpenACCmodeled after OpenMP …
…but specific for accelerators
Might eventually be absorbed into OpenMP
But OpenMP>4.0 also has offloading feature
OpenACCmore descriptive, OpenMPmore prescriptive
Basic principle same: Fork/join model
Master thread launches parallel child threads; merge after execution

master masterfo
rk

parallel
jo
in

OpenMP

master masterfo
rk

parallel

jo
in

OpenACC

Member of the Helmholtz Association 26 March 2018 Slide 14 77

Modus Operandi
Three-step program

1 Annotate code with directives, indicating parallelism
2 OpenACC-capable compiler generates accelerator-specific code
3 $uccess

Member of the Helmholtz Association 26 March 2018 Slide 15 77

1 Directives
pragmatic

Compiler directives state intend to compiler
C/C++
#pragma acc kernels
for (int i = 0; i < 23; i++)
// ...

Fortran
!$acc kernels
do i = 1, 24
! ...
!$acc end kernels

Ignored by compiler which does not understand OpenACC
High level programmingmodel for many-core machines, especially accelerators
OpenACC: Compiler directives, library routines, environment variables
Portable across host systems and accelerator architectures

Member of the Helmholtz Association 26 March 2018 Slide 16 77

2 Compiler
Simple and abstracted

Compiler support
PGI Best performance, great support, free
GCC Beta, limited coverage, OSS
Cray ???

Trust compiler to generate intended parallelism; always check status output!
No need to know ins’n’outs of accelerator; leave it to expert compiler engineers⋆

One code can target different accelerators: GPUs, or evenmulti-core CPUs→ Portability

⋆: Eventually you want to tune for device; but that’s possible

Member of the Helmholtz Association 26 March 2018 Slide 17 77

3 $uccess
Iteration is key

Serial to parallel: fast
Serial to fast parallel: more time needed
Start simple→ refine

⇒ Productivity
Because of generalness: Sometimes not last bit of hardware performance accessible
But: Use OpenACC together with other accelerator-targeting techniques (CUDA, libraries,
…)

Expose
Parallelism

CompileMeasure

Member of the Helmholtz Association 26 March 2018 Slide 18 77

OpenACC Accelerator Model
For computation andmemory spaces

Main program executes on host
Device code is transferred to accelerator
Execution on accelerator is started
Host waits until return (except: async)

Two separate memory spaces; data
transfers back and forth

Transfers hidden from programmer
Memories not coherent!
Compiler helps; GPU runtime helps

Start main
program

Wait for code

Run code

Finish code
Return to host

Transfer

W
ai
t

Host Memory Device
Memory

DMA Transfers

Member of the Helmholtz Association 26 March 2018 Slide 19 77

OpenACC Programming Model
A binary perspective

OpenACC interpretation needs to be activated as compile flag
PGI pgcc -acc [-ta=tesla|-ta=multicore]
GCC gcc -fopenacc
→ Ignored by incapable compiler!

Additional flags possible to improve/modify compilation
-ta=tesla:cc60 Use compute capability 6.0

-ta=tesla:lineinfo Add source code correlation into binary
-ta=tesla:managed Use unified memory

-fopenacc-dim=geom Use geom configuration for threads

Member of the Helmholtz Association 26 March 2018 Slide 20 77

A Glimpse of OpenACC

#pragma acc data copy(x[0:N],y[0:N])
#pragma acc parallel loop
{

for (int i=0; i<N; i++) {
x[i] = 1.0;
y[i] = 2.0;

}
for (int i=0; i<N; i++) {

y[i] = i*x[i]+y[i];
}

}

Member of the Helmholtz Association 26 March 2018 Slide 21 77

Parallelization Workflow

Identify available parallelism

Parallelize loops with OpenACC

Optimize data locality

Optimize loop performance

Member of the Helmholtz Association 26 March 2018 Slide 22 77

First Steps in OpenACC

Member of the Helmholtz Association 26 March 2018 Slide 23 77

Jacobi Solver
Algorithmic description

Example for acceleration: Jacobi solver
Iterative solver, converges to correct value
Each iteration step: compute average of neighboring points
Example: 2D Poisson equation: ∇2A(x, y) = B(x, y)

Ai,j+1

Ai−1,j

Ai,j−1

Ai+1,j

Data Point
Boundary Point
Stencil

Ak+1(i, j) = −
1
4
(B(i, j)− (Ak(i− 1, j) + Ak(i, j+ 1),+Ak(i+ 1, j) + Ak(i, j− 1)))

Member of the Helmholtz Association 26 March 2018 Slide 24 77

Jacobi Solver
Source code

while (error > tol && iter < iter_max) {
error = 0.0;
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

(A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
}}
for (int iy = iy_start; iy < iy_end; iy++) {

for(int ix = ix_start; ix < ix_end; ix++) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}
Member of the Helmholtz Association 26 March 2018 Slide 25 77

Jacobi Solver
Source code

while (error > tol && iter < iter_max) {
error = 0.0;
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

(A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
}}
for (int iy = iy_start; iy < iy_end; iy++) {

for(int ix = ix_start; ix < ix_end; ix++) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}

Iterate until converged

Member of the Helmholtz Association 26 March 2018 Slide 25 77

Jacobi Solver
Source code

while (error > tol && iter < iter_max) {
error = 0.0;
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

(A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
}}
for (int iy = iy_start; iy < iy_end; iy++) {

for(int ix = ix_start; ix < ix_end; ix++) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}

Iterate until converged

Iterate across
matrix elements

Member of the Helmholtz Association 26 March 2018 Slide 25 77

Jacobi Solver
Source code

while (error > tol && iter < iter_max) {
error = 0.0;
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

(A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
}}
for (int iy = iy_start; iy < iy_end; iy++) {

for(int ix = ix_start; ix < ix_end; ix++) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}

Iterate until converged

Iterate across
matrix elements

Calculate new value
from neighbors

Member of the Helmholtz Association 26 March 2018 Slide 25 77

Jacobi Solver
Source code

while (error > tol && iter < iter_max) {
error = 0.0;
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

(A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
}}
for (int iy = iy_start; iy < iy_end; iy++) {

for(int ix = ix_start; ix < ix_end; ix++) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}

Iterate until converged

Iterate across
matrix elements

Calculate new value
from neighbors

Accumulate error

Member of the Helmholtz Association 26 March 2018 Slide 25 77

Jacobi Solver
Source code

while (error > tol && iter < iter_max) {
error = 0.0;
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

(A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
}}
for (int iy = iy_start; iy < iy_end; iy++) {

for(int ix = ix_start; ix < ix_end; ix++) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}

Iterate until converged

Iterate across
matrix elements

Calculate new value
from neighbors

Accumulate error

Swap input/output

Member of the Helmholtz Association 26 March 2018 Slide 25 77

Jacobi Solver
Source code

while (error > tol && iter < iter_max) {
error = 0.0;
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

(A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
}}
for (int iy = iy_start; iy < iy_end; iy++) {

for(int ix = ix_start; ix < ix_end; ix++) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}

Iterate until converged

Iterate across
matrix elements

Calculate new value
from neighbors

Accumulate error

Swap input/output

Set boundary conditions

Member of the Helmholtz Association 26 March 2018 Slide 25 77

Parallelization Workflow

Identify available parallelism

Parallelize loops with OpenACC

Optimize data locality

Optimize loop performance

Member of the Helmholtz Association 26 March 2018 Slide 26 77

Profiling
Profile

[…] premature optimization is the root of all evil.

Yet we should not pass up our [optimization] opportunities […]

– Donald Knuth [10]

Investigate hot spots of your program!
→ Profile!

Many tools, many levels: perf, PAPI, Score-P, Intel Advisor, NVIDIA Visual Profiler, …
Here: Examples from PGI

Member of the Helmholtz Association 26 March 2018 Slide 27 77

Profiling
Profile

[…] premature optimization is the root of all evil.
Yet we should not pass up our [optimization] opportunities […]
– Donald Knuth [10]

Investigate hot spots of your program!
→ Profile!

Many tools, many levels: perf, PAPI, Score-P, Intel Advisor, NVIDIA Visual Profiler, …
Here: Examples from PGI

Member of the Helmholtz Association 26 March 2018 Slide 27 77

Profile of Application
Info during compilation

$ pgcc -DUSE_DOUBLE -Minfo=all,intensity -fast -Minfo=ccff -Mprof=ccff
poisson2d_reference.o poisson2d.c -o poisson2d
poisson2d.c:
main:

68, Generated vector simd code for the loop
FMA (fused multiply-add) instruction(s) generated

98, FMA (fused multiply-add) instruction(s) generated
105, Loop not vectorized: data dependency
123, Loop not fused: different loop trip count

Loop not vectorized: data dependency
Loop unrolled 8 times

Automated optimization of compiler, due to -fast
Vectorization, FMA, unrolling

Member of the Helmholtz Association 26 March 2018 Slide 28 77

Profile of Application
Info during run

$ pgprof --cpu-profiling on [...] ./poisson2d
======== CPU profiling result (flat):
Time(%) Time Name
77.52% 999.99ms main (poisson2d.c:148 0x6d8)
9.30% 120ms main (0x704)
7.75% 99.999ms main (0x718)
0.78% 9.9999ms main (poisson2d.c:128 0x348)
0.78% 9.9999ms main (poisson2d.c:123 0x398)
0.78% 9.9999ms __xlmass_expd2 (0xffcc011c)
0.78% 9.9999ms __c_mcopy8 (0xffcc0054)
0.78% 9.9999ms __xlmass_expd2 (0xffcc0034)

======== Data collected at 100Hz frequency

78% in main()
Since everything is in main – limited helpfulness
Let’s look into main!

Member of the Helmholtz Association 26 March 2018 Slide 29 77

Code Independency Analysis
Independence is key

while (error > tol && iter < iter_max) {
error = 0.0;
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

(A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
}}
for (int iy = iy_start; iy < iy_end; iy++) {

for(int ix = ix_start; ix < ix_end; ix++) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}

Data dependency
between iterations

Independent loop
iterations

Independent loop
iterations

Independent loop
iterations

Member of the Helmholtz Association 26 March 2018 Slide 30 77

Code Independency Analysis
Independence is key

while (error > tol && iter < iter_max) {
error = 0.0;
for (int ix = ix_start; ix < ix_end; ix++) {

for (int iy = iy_start; iy < iy_end; iy++) {
Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] -

(A[iy*nx+ix+1] + A[iy*nx+ix-1]
+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));

error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
}}
for (int iy = iy_start; iy < iy_end; iy++) {

for(int ix = ix_start; ix < ix_end; ix++) {
A[iy*nx+ix] = Anew[iy*nx+ix];

}}
for (int ix = ix_start; ix < ix_end; ix++) {

A[0*nx+ix] = A[(ny-2)*nx+ix];
A[(ny-1)*nx+ix] = A[1*nx+ix];

}
// same for iy
iter++;

}

Data dependency
between iterations

Independent loop
iterations

Independent loop
iterations

Independent loop
iterations

Member of the Helmholtz Association 26 March 2018 Slide 30 77

Parallelization Workflow

Identify available parallelism

Parallelize loops with OpenACC

Optimize data locality

Optimize loop performance

Member of the Helmholtz Association 26 March 2018 Slide 31 77

Parallel Loops: Parallel
Maybe the secondmost important directive

Programmer identifies block containing parallelism
→ compiler generates parallel code (kernel)
Program launch creates gangs of parallel threads on parallel device
Implicit barrier at end of parallel region
Each gang executes same code sequentially

 OpenACC: parallel

#pragma acc parallel [clause, [, clause] ...] newline
{structured block}

Member of the Helmholtz Association 26 March 2018 Slide 32 77

Parallel Loops: Parallel
Clauses

Diverse clauses to augment the parallel region

private(var) A copy of variables var is made for each gang
firstprivate(var) Same as private, except varwill initialized with value from host

if(cond) Parallel region will execute on accelerator only if cond is true
reduction(op:var) Reduction is performed on variable varwith operation op; supported:

+ * max min …
async[(int)] No implicit barrier at end of parallel region

Member of the Helmholtz Association 26 March 2018 Slide 33 77

Parallel Loops: Loops
Maybe the third most important directive

Programmer identifies loop eligible for parallelization
Directive must be directly before loop
Optional: Describe type of parallelism

 OpenACC: loop

#pragma acc loop [clause, [, clause] ...] newline
{structured block}

Member of the Helmholtz Association 26 March 2018 Slide 34 77

Parallel Loops: Loops
Clauses

independent Iterations of loop are data-independent (implied if in parallel region
(and no seq or auto))

collapse(int) Collapse int tightly-nested loops
seq This loop is to be executed sequentially (not parallel)

tile(int[,int]) Split loops into loops over tiles of the full size
auto Compiler decides what to do

Member of the Helmholtz Association 26 March 2018 Slide 35 77

Parallel Loops: Parallel Loops
Maybe themost important directive

Combined directive: shortcut
Because its used so often
Any clause that is allowed on parallel or loop allowed
Restriction: May not appear in body of another parallel region

 OpenACC: parallel loop

#pragma acc parallel loop [clause, [, clause] ...]

Member of the Helmholtz Association 26 March 2018 Slide 36 77

Parallel Loops Example

double sum = 0.0;
#pragma acc parallel loop
for (int i=0; i<N; i++) {

x[i] = 1.0;
y[i] = 2.0;

}
#pragma acc parallel loop reduction(+:sum)
{
for (int i=0; i<N; i++) {

y[i] = i*x[i]+y[i];
sum+=y[i];

}
}

Kernel 1

Kernel 2

Member of the Helmholtz Association 26 March 2018 Slide 37 77

Parallel Jacobi
Add parallelism

Add OpenACC parallelism tomain loop in Jacobi solver source code (CPU parallelism)
→ Congratulations, you are a parallel developer!

Task 2: A First Parallel Loop

Change to Task2/ directory
Compile: make; see README.md
Submit run to the batch system: make run
Adapt the bsub call and run with other number of iterations, matrix sizes
Change number of CPU threads via $ACC_NUM_CORES or $OMP_NUM_THREADS

? What’s your speed-up? What’s the best configuration for cores?
E Compare it to OpenMP

TASK 2

Member of the Helmholtz Association 26 March 2018 Slide 38 77

Parallel Jacobi
Source Code

110 #pragma acc parallel loop reduction(max:error)
111 for (int ix = ix_start; ix < ix_end; ix++)
112 {
113 for (int iy = iy_start; iy < iy_end; iy++)
114 {
115 Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] - (A[iy*nx+ix+1] +

A[iy*nx+ix-1]↪→

116 + A[(iy-1)*nx+ix] +
A[(iy+1)*nx+ix]));↪→

117 error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
118 }
119 }

Member of the Helmholtz Association 26 March 2018 Slide 39 77

Parallel Jacobi
Compilation result

$ make
pgcc -DUSE_DOUBLE -Minfo=accel -fast -acc -ta=multicore poisson2d.c poisson2d_reference.o
-o poisson2d

poisson2d.c:
main:

110, Generating Multicore code
111, #pragma acc loop gang

110, Generating reduction(max:error)
113, Accelerator restriction: size of the GPU copy of A,rhs,Anew is unknown

Complex loop carried dependence of Anew-> prevents parallelization
Loop carried dependence of Anew-> prevents parallelization
Loop carried backward dependence of Anew-> prevents vectorization

Member of the Helmholtz Association 26 March 2018 Slide 40 77

Parallel Jacobi
Run result

$ make run
bsub -I -R "rusage[ngpus_shared=1]" -U gtc ./poisson2d
Job <4444> is submitted to default queue <normal.i>.
<<Waiting for dispatch ...>>
<<Starting on juronc11>>
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 56.6275 s, This: 19.9486 s, speedup: 2.84

Member of the Helmholtz Association 26 March 2018 Slide 41 77

Parallel Jacobi: OpenMP E

OpenMP pragma is quite similar
#pragma acc parallel loop reduction(max:error)
#pragma omp parallel for reduction(max:error)
for (int ix = ix_start; ix < ix_end; ix++) { ... }

PGI’s compiler output is a bit different (but states the same)

$ pgcc -DUSE_DOUBLE -Minfo=mp -fast -mp poisson2d.c poisson2d_reference.o -o poisson2d
poisson2d.c:
main:

112, Parallel region activated
Parallel loop activated with static block schedule

123, Parallel region terminated
Begin critical section
End critical section
Barrier

Run time should be very similar!
Member of the Helmholtz Association 26 March 2018 Slide 42 77

More Parallelism: Kernels
More freedom for compiler

Kernels directive: second way to expose parallelism
Regionmay contain parallelism
Compiler determines parallelization opportunities

→ More freedom for compiler
Rest: Same as for parallel

 OpenACC: kernels

#pragma acc kernels [clause, [, clause] ...]

Member of the Helmholtz Association 26 March 2018 Slide 43 77

Kernels Example

double sum = 0.0;
#pragma acc kernels
{
for (int i=0; i<N; i++) {

x[i] = 1.0;
y[i] = 2.0;

}
for (int i=0; i<N; i++) {

y[i] = i*x[i]+y[i];
sum+=y[i];

}
}

Kernels created here

Member of the Helmholtz Association 26 March 2018 Slide 44 77

kernels vs. parallel
Both approaches equally valid; can perform equally well

kernels
Compiler performs parallel analysis
Can cover large area of code with single directive
Gives compiler additional leeway

parallel
Requires parallel analysis by programmer
Will also parallelize what compiler maymiss
More explicit
Similar to OpenMP

Both regions may not contain other kernels/parallel regions
No braunching into or out
Programmust not depend on order of evaluation of clauses
At most: One if clause

Member of the Helmholtz Association 26 March 2018 Slide 45 77

kernels vs. parallel
Both approaches equally valid; can perform equally well
kernels

Compiler performs parallel analysis
Can cover large area of code with single directive
Gives compiler additional leeway

parallel
Requires parallel analysis by programmer
Will also parallelize what compiler maymiss
More explicit
Similar to OpenMP

Both regions may not contain other kernels/parallel regions
No braunching into or out
Programmust not depend on order of evaluation of clauses
At most: One if clause

Member of the Helmholtz Association 26 March 2018 Slide 45 77

kernels vs. parallel
Both approaches equally valid; can perform equally well
kernels

Compiler performs parallel analysis
Can cover large area of code with single directive
Gives compiler additional leeway

parallel
Requires parallel analysis by programmer
Will also parallelize what compiler maymiss
More explicit
Similar to OpenMP

Both regions may not contain other kernels/parallel regions
No braunching into or out
Programmust not depend on order of evaluation of clauses
At most: One if clause

Member of the Helmholtz Association 26 March 2018 Slide 45 77

OpenACC on the GPU

Member of the Helmholtz Association 26 March 2018 Slide 46 77

Changes for GPU-OpenACC
Immensely complicated changes

Necessary for previous code to run on GPU: -ta=tesla instead of -ta=multicore

⇒ That’s it!

But we can optimize!

Member of the Helmholtz Association 26 March 2018 Slide 47 77

Changes for GPU-OpenACC
Immensely complicated changes

Necessary for previous code to run on GPU: -ta=tesla instead of -ta=multicore
⇒ That’s it!

But we can optimize!

Member of the Helmholtz Association 26 March 2018 Slide 47 77

Changes for GPU-OpenACC
Immensely complicated changes

Necessary for previous code to run on GPU: -ta=tesla instead of -ta=multicore
⇒ That’s it!

But we can optimize!

Member of the Helmholtz Association 26 March 2018 Slide 47 77

Parallelization Workflow

Identify available parallelism

Parallelize loops with OpenACC

Optimize data locality

Optimize loop performance

Member of the Helmholtz Association 26 March 2018 Slide 48 77

Automatic Data Transfers

Up to now: We did not care about data transfers
Compiler and runtime care
CPU data can be copied automatically to GPU via Managed
Memory
Magic keyword: -ta=tesla:managed
Bemore explicit for full portability and full performance

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

More in Ap
pendix!

Member of the Helmholtz Association 26 March 2018 Slide 49 77

Automatic Data Transfers

Up to now: We did not care about data transfers
Compiler and runtime care
CPU data can be copied automatically to GPU via Managed
Memory
Magic keyword: -ta=tesla:managed
Bemore explicit for full portability and full performance

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

More in Ap
pendix!

Member of the Helmholtz Association 26 March 2018 Slide 49 77

Automatic Data Transfers

Up to now: We did not care about data transfers
Compiler and runtime care
CPU data can be copied automatically to GPU via Managed
Memory
Magic keyword: -ta=tesla:managed
Bemore explicit for full portability and full performance

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

More in Ap
pendix!

Member of the Helmholtz Association 26 March 2018 Slide 49 77

Copy Clause

Explicitly inform OpenACC compiler about data intentions
Use data which is already on GPU; only copy parts of it; …

 OpenACC: copy

#pragma acc parallel copy(A[start:end])
Also: copyin(B[s:e]) copyout(C[s:e]) present(D[s:e]) create(E[s:e])

Member of the Helmholtz Association 26 March 2018 Slide 50 77

Data Regions
Tomanually specify data locations: data construct

Defines region of code in which data remains on device
Data is shared among all kernels in region
Explicit data transfers

 OpenACC: data

#pragma acc data [clause, [, clause] ...]

Member of the Helmholtz Association 26 March 2018 Slide 51 77

Data Regions
Clauses

Clauses to augment the data regions

copy(var) Allocates memory of var on GPU, copies data to GPU at beginning of region,
copies data to host at end of region
Specifies size of var: var[lowerBound:size]

copyin(var) Allocates memory of var on GPU, copies data to GPU at beginning of region
copyout(var) Allocates memory of var on GPU, copies data to host at end of region
create(var) Allocates memory of var on GPU

present(var) Data of var is not copies automatically to GPU but considered present

Member of the Helmholtz Association 26 March 2018 Slide 52 77

Data Region Example

#pragma acc data copyout(y[0:N]) create(x[0:N])
{
double sum = 0.0;
#pragma acc parallel loop
for (int i=0; i<N; i++) {

x[i] = 1.0;
y[i] = 2.0;

}
#pragma acc parallel loop
for (int i=0; i<N; i++) {

y[i] = i*x[i]+y[i];
}
}

Member of the Helmholtz Association 26 March 2018 Slide 53 77

Data Regions II
Looser regions: enter data directive

Define data regions, but not for structured block
Closest to cudaMemcpy()
Still, explicit data transfers

 OpenACC: enter data

#pragma acc enter data [clause, [, clause] ...]
#pragma acc exit data [clause, [, clause] ...]

Member of the Helmholtz Association 26 March 2018 Slide 54 77

Parallel Jacobi II
More parallelism, Data locality

Add OpenACC parallelism to other loops of while (L:123 – L:141)
Use either kernels or parallel
Add data regions such that all data resides on device during iterations

Task 3: More Parallel Loops

Change to Task3/ directory
Change source code; see README.md
Compile: make
Submit parallel run to the batch system: make run

? What’s your speed-up?
E Change order of for loop!

TASK 3

Member of the Helmholtz Association 26 March 2018 Slide 55 77

Parallel Jacobi II
Source Code

105 #pragma acc data copy(A[0:nx*ny]) copyin(rhs[0:nx*ny]) create(Anew[0:nx*ny])
106 while (error > tol && iter < iter_max)
107 {
108 error = 0.0;
109
110 // Jacobi kernel
111 #pragma acc parallel loop reduction(max:error)
112 for (int ix = ix_start; ix < ix_end; ix++)
113 {
114 for (int iy = iy_start; iy < iy_end; iy++)
115 {
116 Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] - (A[iy*nx+ix+1] + A[iy*nx+ix-1]
117 + A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));
118 error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
119 }
120 }
121
122 // A <-> Anew
123 #pragma acc parallel loop
124 for (int iy = iy_start; iy < iy_end; iy++)
125 // …
126 }

Member of the Helmholtz Association 26 March 2018 Slide 56 77

Parallel Jacobi II
Compilation result

$ make
pgcc -c -DUSE_DOUBLE -Minfo=accel -fast -acc -ta=tesla:cc60,managed poisson2d_reference.c
-o poisson2d_reference.o

poisson2d.c:
main:

105, Generating copyin(rhs[:ny*nx])
Generating create(Anew[:ny*nx])
Generating copy(A[:ny*nx])

111, Accelerator kernel generated
Generating Tesla code
111, Generating reduction(max:error)
112, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
114, #pragma acc loop seq

114, Complex loop carried dependence of Anew-> prevents parallelization
Loop carried dependence of Anew-> prevents parallelization

Member of the Helmholtz Association 26 March 2018 Slide 57 77

Parallel Jacobi II
Run result

$ make run
bsub -I -R "rusage[ngpus_shared=1]" ./poisson2d
Job <4444> is submitted to default queue <normal.i>.
<<Waiting for dispatch ...>>
<<Starting on juronc10>>
Jacobi relaxation calculation: max 500 iterations on 2048 x 2048 mesh
Calculate reference solution and time with serial CPU execution.

0, 0.249999
100, 0.249760
200, 0...

Calculate current execution.
0, 0.249999

100, 0.249760
200, 0...

2048x2048: Ref: 53.7294 s, This: 0.3775 s, speedup: 142.33

Member of the Helmholtz Association 26 March 2018 Slide 58 77

Parallelization Workflow

Identify available parallelism

Parallelize loops with OpenACC

Optimize data locality

Optimize loop performance

Member of the Helmholtz Association 26 March 2018 Slide 59 77

Parallel Jacobi II+
Expert Task

E

Improve memory access pattern: Loop order in main loop
#pragma acc parallel loop reduction(max:error)
for (int ix = ix_start; ix < ix_end; ix++) {

#pragma acc loop vector
for (int iy = iy_start; iy < iy_end; iy++) {

Anew[iy*nx + ix] = -0.25 *
(rhs[iy*nx+ix] -↪→
(A[iy*nx+ix+1] + A[iy*nx+ix-1]

+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));
//...

ix Outer run index; accesses
consecutive memory locations

iy Inner run index; accesses offset
memory locations

→ Change order to optimize pattern

Member of the Helmholtz Association 26 March 2018 Slide 60 77

Parallel Jacobi II+
Expert Task

E

Improve memory access pattern: Loop order in main loop
#pragma acc parallel loop reduction(max:error)
for (int iy = iy_start; iy < iy_end; iy++) {

#pragma acc loop vector
for (int ix = ix_start; ix < ix_end; ix++) {

Anew[iy*nx + ix] = -0.25 *
(rhs[iy*nx+ix] -↪→
(A[iy*nx+ix+1] + A[iy*nx+ix-1]

+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));
//...

ix Outer run index; accesses
consecutive memory locations

iy Inner run index; accesses offset
memory locations

→ Change order to optimize pattern✓

Member of the Helmholtz Association 26 March 2018 Slide 60 77

Parallel Jacobi II+
Expert Task

E

Improve memory access pattern: Loop order in main loop
#pragma acc parallel loop reduction(max:error)
for (int iy = iy_start; iy < iy_end; iy++) {

#pragma acc loop vector
for (int ix = ix_start; ix < ix_end; ix++) {

Anew[iy*nx + ix] = -0.25 *
(rhs[iy*nx+ix] -↪→
(A[iy*nx+ix+1] + A[iy*nx+ix-1]

+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));
//...

ix Outer run index; accesses
consecutive memory locations

iy Inner run index; accesses offset
memory locations

→ Change order to optimize pattern✓

$ make run
[...]
2048x2048: Ref: 69.0022 s, This: 0.2680 s, speedup: 257.52

Member of the Helmholtz Association 26 March 2018 Slide 60 77

Parallel Jacobi II+
Expert Task

E

Improve memory access pattern: Loop order in main loop
#pragma acc parallel loop reduction(max:error)
for (int iy = iy_start; iy < iy_end; iy++) {

#pragma acc loop vector
for (int ix = ix_start; ix < ix_end; ix++) {

Anew[iy*nx + ix] = -0.25 *
(rhs[iy*nx+ix] -↪→
(A[iy*nx+ix+1] + A[iy*nx+ix-1]

+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));
//...

ix Outer run index; accesses
consecutive memory locations

iy Inner run index; accesses offset
memory locations

→ Change order to optimize pattern✓

$ make run
[...]
2048x2048: Ref: 69.0022 s, This: 0.2680 s, speedup: 257.52

Fix also CPU
version!

Member of the Helmholtz Association 26 March 2018 Slide 60 77

Parallel Jacobi II+
Expert Task

E

Improve memory access pattern: Loop order in main loop
#pragma acc parallel loop reduction(max:error)
for (int iy = iy_start; iy < iy_end; iy++) {

#pragma acc loop vector
for (int ix = ix_start; ix < ix_end; ix++) {

Anew[iy*nx + ix] = -0.25 *
(rhs[iy*nx+ix] -↪→
(A[iy*nx+ix+1] + A[iy*nx+ix-1]

+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));
//...

ix Outer run index; accesses
consecutive memory locations

iy Inner run index; accesses offset
memory locations

→ Change order to optimize pattern✓

$ make run
[...]
2048x2048: Ref: 20.3076 s, This: 0.2602 s, speedup: 78.04

Member of the Helmholtz Association 26 March 2018 Slide 60 77

Parallel Jacobi II+
Expert Task

E

Improve memory access pattern: Loop order in main loop
#pragma acc parallel loop reduction(max:error)
for (int iy = iy_start; iy < iy_end; iy++) {

#pragma acc loop vector
for (int ix = ix_start; ix < ix_end; ix++) {

Anew[iy*nx + ix] = -0.25 *
(rhs[iy*nx+ix] -↪→
(A[iy*nx+ix+1] + A[iy*nx+ix-1]

+ A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));
//...

ix Outer run index; accesses
consecutive memory locations

iy Inner run index; accesses offset
memory locations

→ Change order to optimize pattern✓

$ make run
[...]
2048x2048: Ref: 20.3076 s, This: 0.2602 s, speedup: 78.04

More on Op
enACC thread

configuratio
n in Append

ix!

Member of the Helmholtz Association 26 March 2018 Slide 60 77

Aside: Data Transfer with NVLink
One feature of Minsky not showcased in tutorial: NVLink
between CPU and GPU
Task 3 on P100 + PCI-E:

$ nvprof ./poisson2d
2048x2048: Ref: 73.1076 s, This: 0.4600 s, speedup: 158.93
Device "Tesla P100-PCIE-12GB (0)"

Count Avg Size Min Size Max Size Total Size Total Time Name
657 149.63KB 4.0000KB 0.9844MB 96.00000MB 9.050452ms Host To Device
193 169.78KB 4.0000KB 0.9961MB 32.00000MB 2.679974ms Device To Host

Task 3 on P100 + NVLink:

2048x2048: Ref: 49.7252 s, This: 0.5574 s, speedup: 89.21
Device "Tesla P100-SXM2-16GB (0)"

Count Avg Size Min Size Max Size Total Size Total Time Name
480 204.80KB 64.000KB 960.00KB 96.00000MB 3.325184ms Host To Device
160 204.80KB 64.000KB 960.00KB 32.00000MB 1.102954ms Device To Host

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host Device

PCI-E:< 16 GB/s

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host Device

NVLink: < 40 GB/s

Member of the Helmholtz Association 26 March 2018 Slide 61 77

Parallelization Workflow

Identify available parallelism

Parallelize loops with OpenACC

Optimize data locality

Optimize loop performance

Member of the Helmholtz Association 26 March 2018 Slide 62 77

Parallelization Workflow

Identify available parallelism

Parallelize loops with OpenACC

Optimize data locality

Optimize loop performance

Member of the Helmholtz Association 26 March 2018 Slide 62 77

OpenACC on Multiple GPUs

Member of the Helmholtz Association 26 March 2018 Slide 63 77

Message Passing Interface Introduction

MPI: Message Passing Interface
Standardized API to communicate data across processes and
nodes; compilers
Various implementations: OpenMPI,MPICH,MVAPICH,
Vendor-specific versions
Standard in parallel and distributed High Performance
Computing
Unrelated to OpenACC, but works well together!

→ www.open-mpi.org/doc/

0

1 2

3 4

Member of the Helmholtz Association 26 March 2018 Slide 64 77

https://www.open-mpi.org/doc/

MPI API Examples
Configuration calls
MPI_Comm_size() Get number of total processes
MPI_Comm_rank() Get current process number 0 1 2 3 4 5 6

Point-to-point routines
MPI_Send() Send data to other process
MPI_Recv() Receive data from other process

MPI_Sendrecv() Do both in one call
Collective routines

MPI_Bcast() Broadcast data from one process to all others
MPI_Reduce() Reduce (e.g. sum) values on all processes

MPI_Allgather() Gathers data from all processes, distributes to all
Andmany, manymore!

Member of the Helmholtz Association 26 March 2018 Slide 65 77

MPI Skeleton
#include <mpi.h>
int main(int argc, char *argv[]) {

// Initialize MPI
MPI_Init(&argc, &argv);

int rank, size;
// Get current rank ID
MPI_Comm_rank(MPI_COMM_WORLD ,&rank);
// Get total number of ranks
MPI_Comm_size(MPI_COMM_WORLD, &size);

// Do something (call MPI routines, ...)
...

// Shutdown MPI
MPI_Finalize();
return 0;

}

Member of the Helmholtz Association 26 March 2018 Slide 66 77

Using MPI

Compile with MPI compiler (wrapper around usual compiler)

$ mpicc -o myapp myapp.c

Run with MPI launcher mpirun (takes care about configuration, $VARS, …)

$ mpirun -np 4 ./myapp <arguments>

Member of the Helmholtz Association 26 March 2018 Slide 67 77

Using MPI

Compile with MPI compiler (wrapper around usual compiler)

$ mpicc -o myapp myapp.c

Run with MPI launcher mpirun (takes care about configuration, $VARS, …)

$ mpirun -np 4 ./myapp <arguments>

Rank 0

myapp

Rank 1

myapp

Rank 2

myapp

Rank 3

myapp

Member of the Helmholtz Association 26 March 2018 Slide 67 77

MPI Strategy for Jacobi Solver
Goal: Extend parallelization from GPU threads to multiple GPUs

Distribute grid of points to GPUs

Halo points need special consideration
That’s what makes things interesting here

Evaluated point needs data from neighboring points
At border: Data might be on different GPU→ Halos!
For every iteration step: Update halo from other GPU device
⇒ Regular MPI communications to top

and from top
MPI_Sendrecv(A+iy_start*nx+1 , nx-2, MPI_DOUBLE, top, 0,

A+iy_end*nx+1 , nx-2, MPI_DOUBLE, bottom, 0,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);

MPI_Sendrecv(A+(iy_end-1)*nx+1 , nx-2, MPI_DOUBLE, top, 0,

A+(iy_start-1)*nx+1 , nx-2, MPI_DOUBLE, bottom, 0,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);

Member of the Helmholtz Association 26 March 2018 Slide 68 77

MPI Strategy for Jacobi Solver

GPU 1

GPU 2

GPU 3

GPU 4

Goal: Extend parallelization from GPU threads to multiple GPUs
Distribute grid of points to GPUs

Halo points need special consideration
That’s what makes things interesting here

Evaluated point needs data from neighboring points
At border: Data might be on different GPU→ Halos!
For every iteration step: Update halo from other GPU device
⇒ Regular MPI communications to top

and from top
MPI_Sendrecv(A+iy_start*nx+1 , nx-2, MPI_DOUBLE, top, 0,

A+iy_end*nx+1 , nx-2, MPI_DOUBLE, bottom, 0,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);

MPI_Sendrecv(A+(iy_end-1)*nx+1 , nx-2, MPI_DOUBLE, top, 0,

A+(iy_start-1)*nx+1 , nx-2, MPI_DOUBLE, bottom, 0,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);

Member of the Helmholtz Association 26 March 2018 Slide 68 77

MPI Strategy for Jacobi Solver

GP
U
0

GP
U
1

GP
U
2

GP
U
3

Goal: Extend parallelization from GPU threads to multiple GPUs
Distribute grid of points to GPUs

Halo points need special consideration
That’s what makes things interesting here

Evaluated point needs data from neighboring points
At border: Data might be on different GPU→ Halos!
For every iteration step: Update halo from other GPU device
⇒ Regular MPI communications to top

and from top
MPI_Sendrecv(A+iy_start*nx+1 , nx-2, MPI_DOUBLE, top, 0,

A+iy_end*nx+1 , nx-2, MPI_DOUBLE, bottom, 0,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);

MPI_Sendrecv(A+(iy_end-1)*nx+1 , nx-2, MPI_DOUBLE, top, 0,

A+(iy_start-1)*nx+1 , nx-2, MPI_DOUBLE, bottom, 0,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);

Member of the Helmholtz Association 26 March 2018 Slide 68 77

MPI Strategy for Jacobi Solver

GP
U
0

GP
U
1

GP
U
2

GP
U
3

Goal: Extend parallelization from GPU threads to multiple GPUs
Distribute grid of points to GPUs

Halo points need special consideration
That’s what makes things interesting here

Evaluated point needs data from neighboring points

At border: Data might be on different GPU→ Halos!
For every iteration step: Update halo from other GPU device
⇒ Regular MPI communications to top

and from top
MPI_Sendrecv(A+iy_start*nx+1 , nx-2, MPI_DOUBLE, top, 0,

A+iy_end*nx+1 , nx-2, MPI_DOUBLE, bottom, 0,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);

MPI_Sendrecv(A+(iy_end-1)*nx+1 , nx-2, MPI_DOUBLE, top, 0,

A+(iy_start-1)*nx+1 , nx-2, MPI_DOUBLE, bottom, 0,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);

Member of the Helmholtz Association 26 March 2018 Slide 68 77

MPI Strategy for Jacobi Solver

GP
U
0

GP
U
1

GP
U
2

GP
U
3

Goal: Extend parallelization from GPU threads to multiple GPUs
Distribute grid of points to GPUs

Halo points need special consideration
That’s what makes things interesting here

Evaluated point needs data from neighboring points
At border: Data might be on different GPU→ Halos!

For every iteration step: Update halo from other GPU device
⇒ Regular MPI communications to top

and from top
MPI_Sendrecv(A+iy_start*nx+1 , nx-2, MPI_DOUBLE, top, 0,

A+iy_end*nx+1 , nx-2, MPI_DOUBLE, bottom, 0,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);

MPI_Sendrecv(A+(iy_end-1)*nx+1 , nx-2, MPI_DOUBLE, top, 0,

A+(iy_start-1)*nx+1 , nx-2, MPI_DOUBLE, bottom, 0,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);

Member of the Helmholtz Association 26 March 2018 Slide 68 77

MPI Strategy for Jacobi Solver

GP
U
0

GP
U
1

GP
U
2

GP
U
3

Goal: Extend parallelization from GPU threads to multiple GPUs
Distribute grid of points to GPUs

Halo points need special consideration
That’s what makes things interesting here

Evaluated point needs data from neighboring points
At border: Data might be on different GPU→ Halos!
For every iteration step: Update halo from other GPU device
⇒ Regular MPI communications to top

and from top

MPI_Sendrecv(A+iy_start*nx+1 , nx-2, MPI_DOUBLE, top, 0,
A+iy_end*nx+1 , nx-2, MPI_DOUBLE, bottom, 0,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);

MPI_Sendrecv(A+(iy_end-1)*nx+1 , nx-2, MPI_DOUBLE, top, 0,

A+(iy_start-1)*nx+1 , nx-2, MPI_DOUBLE, bottom, 0,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);

Member of the Helmholtz Association 26 March 2018 Slide 68 77

MPI Strategy for Jacobi Solver

GP
U
0

GP
U
1

GP
U
2

GP
U
3

Goal: Extend parallelization from GPU threads to multiple GPUs
Distribute grid of points to GPUs

Halo points need special consideration
That’s what makes things interesting here

Evaluated point needs data from neighboring points
At border: Data might be on different GPU→ Halos!
For every iteration step: Update halo from other GPU device
⇒ Regular MPI communications to top and from top
MPI_Sendrecv(A+iy_start*nx+1 , nx-2, MPI_DOUBLE, top, 0,

A+iy_end*nx+1 , nx-2, MPI_DOUBLE, bottom, 0,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);

MPI_Sendrecv(A+(iy_end-1)*nx+1 , nx-2, MPI_DOUBLE, top, 0,

A+(iy_start-1)*nx+1 , nx-2, MPI_DOUBLE, bottom, 0,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);

Member of the Helmholtz Association 26 March 2018 Slide 68 77

Determining GPU ID
Affinity on nodes with multiple GPUs

Problem: Usually, nodes have more than one GPU
Howwould MPI know how to distribute the load?
Select active GPUwith
#pragma acc set device_num(ID)

Alternative andmore in appendix

Member of the Helmholtz Association 26 March 2018 Slide 69 77

Parallel Jacobi III
Multi-GPU parallelism, asynchronous execution

Implement domain decomposition for 4 GPUs

Task 4: Multi-GPU Usage

Change to Task4/ directory
Change source code; see README.md
Compile: make
Submit parallel run to the batch system: make run

? What’s your speed-up?
E Implement asynchronous halo communication; see README.md in Task4E/!

TASK 4

Member of the Helmholtz Association 26 March 2018 Slide 70 77

Parallel Jacobi III
Source Code

#pragma acc set device_num(rank)
// ...
int iy_start = rank * chunk_size;
int iy_end = iy_start + chunk_size;
// ...
MPI_Sendrecv(A+iy_start*nx+ix_start, (ix_end-ix_start), MPI_REAL_TYPE, top , 0,

A+iy_end*nx+ix_start, (ix_end-ix_start), MPI_REAL_TYPE, bottom, 0,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);

MPI_Sendrecv(A+(iy_end-1)*nx+ix_start, (ix_end-ix_start), MPI_REAL_TYPE, bottom, 0,
A+(iy_start-1)*nx+ix_start, (ix_end-ix_start), MPI_REAL_TYPE, top , 0,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);

Member of the Helmholtz Association 26 March 2018 Slide 71 77

Parallel Jacobi III
MPI run result

$ make run
$ bsub -env "all" -n 4 -I -R "rusage[ngpus_shared=1]" mpirun --npersocket 2 -bind-to core
-np 4 ./poisson2d 1000 4096

Job <15145> is submitted to queue <vis>.
Jacobi relaxation calculation: max 1000 iterations on 4096 x 4096 mesh
Calculate reference solution and time with MPI-less 1 device execution.

0, 0.250000
100, 0.249940
[...]

Calculate current execution.
0, 0.250000

[...]
Num GPUs: 4.
4096x4096: 1 GPU: 1.8621 s, 4 GPUs: 0.6924 s, speedup: 2.69, efficiency: 67.23%
MPI time: 0.1587 s, inter GPU BW: 0.77 GiB/s

Member of the Helmholtz Association 26 March 2018 Slide 72 77

Overlap Communication and Computation
Disentangling

Process entire domain MPI

Process boundary

Process inner domain

MPI

N
o
O
ve
rla

p
O
ve
rla

p

Member of the Helmholtz Association 26 March 2018 Slide 73 77

Overlap Communication and Computation
Disentangling

Process entire domain MPI

Process boundary

Process inner domain

MPI

Gain

N
o
O
ve
rla

p
O
ve
rla

p

Member of the Helmholtz Association 26 March 2018 Slide 73 77

Overlap Communication and Computation
OpenACC keyword

E

OpenACC: Enable asynchronous execution with async keyword
Runtime will execute async’ed region at same time
Barrier: wait
#pragma acc parallel loop present(A, Anew)
for (...) { } // Process boundary
#pragma acc parallel loop present(A, Anew) async
for (...) { } // Process inner domain
#pragma acc host_data use_device (A) {

MPI_Sendrecv(A+iy_start*nx+1, nx-2, MPI_DOUBLE, top, 0,
A+iy_end*nx+1, nx-2, MPI_DOUBLE, bottom, 0,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);

MPI_Sendrecv(A+(iy_end-1)*nx+1, nx-2, MPI_DOUBLE, bottom, 1,
A+(iy_start-1)*nx+1, nx-2, MPI_DOUBLE, top, 1,
MPI_COMM_WORLD, MPI_STATUS_IGNORE);

}
#pragma acc wait // Wait for inner domain to finish processing

Member of the Helmholtz Association 26 March 2018 Slide 74 77

Parallel Jacobi III+
MPI async run result

$ make run
$ bsub -env "all" -n 4 -I -R "rusage[ngpus_shared=1]" mpirun --npersocket 2 -bind-to core
-np 4 ./poisson2d 1000 4096

Job <15145> is submitted to queue <vis>.
Jacobi relaxation calculation: max 1000 iterations on 4096 x 4096 mesh
Calculate reference solution and time with MPI-less 1 device execution.

0, 0.250000
100, 0.249940
[...]

Calculate current execution.
0, 0.250000

[...]
Num GPUs: 4.
4096x4096: 1 GPU: 1.8656 s, 4 GPUs: 0.6424 s, speedup: 2.90, efficiency: 72.61%
MPI time: 0.2455 s, inter GPU BW: 0.50 GiB/s

E

Member of the Helmholtz Association 26 March 2018 Slide 75 77

Conclusions, Summary

Member of the Helmholtz Association 26 March 2018 Slide 76 77

Conclusions & Summary
We’ve learned a lot today!

Minsky nodes are fat nodes:
2 POWER8NVL CPUs (2× 10 cores), 4 P100 GPUs (4× 56 SMs)
OpenACC can be used to efficiently exploit parallelism
… on the CPU, similar to OpenMP,
… on the GPU, for which it is specially designed for,
… onmultiple GPUs, working well together with MPI.

There are still many more tuning possibilities and keywords not mentioned (time…)
→ Great online resources to deepen your knowledge (see appendix)

Member of the Helmholtz Association 26 March 2018 Slide 77 77

Conclusions & Summary
We’ve learned a lot today!

Minsky nodes are fat nodes:
2 POWER8NVL CPUs (2× 10 cores), 4 P100 GPUs (4× 56 SMs)
OpenACC can be used to efficiently exploit parallelism
… on the CPU, similar to OpenMP,
… on the GPU, for which it is specially designed for,
… onmultiple GPUs, working well together with MPI.

There are still many more tuning possibilities and keywords not mentioned (time…)
→ Great online resources to deepen your knowledge (see appendix)

Thank you

for your att
ention!

a.herten@fz-juelich.de

Please subm
it feedback

form!

Member of the Helmholtz Association 26 March 2018 Slide 77 77

mailto:a.herten@fz-juelich.de

APPENDIX

Member of the Helmholtz Association 26 March 2018 Slide 1 34

Appendix
List of Tasks
Supplemental: POWER9 Structure Diagrams
Supplemental: JURON Login via SSH
Supplemental: Summitdev Login
Supplemental: NVIDIA GPUMemory Spaces
Supplemental: Leveraging OpenACC Threads
Supplemental: MPI
Further Reading
Glossary
References

Member of the Helmholtz Association 26 March 2018 Slide 2 34

List of Tasks

Task 1: JURON
Task 2: A First Parallel Loop
Task 3: More Parallel Loops
Task 4: Multi-GPU Usage

Member of the Helmholtz Association 26 March 2018 Slide 3 34

Supplemental: POWER9 Structure Diagrams

Member of the Helmholtz Association 26 March 2018 Slide 4 34

POWER9 Structure Diagram
5472ch02.fm Draft Document for Review March 5, 2018 1:24 pm

12 IBM Power System AC922 Introduction and Technical Overview

Figure 2-3 POWER9 chip external connectivity

Faster DDR4 memory DIMMs at 2666 MHz are connected to two memory controllers via
eight channels with a total bandwidth of 120 GB/s. Symmetric Multiprocessing chip-to-chip
interconnect is done via a four channel SMP bus with 64 GB/s bidirectional bandwidth.

The latest PCIe Gen4 interconnect doubles the channel bandwidth from previous PCIe Gen3
generation, allowing for the 48 PCIe channels to drive total of 192 GB/s bidirectional
bandwidth between I/O adapters and the POWER9 chip.

The connection between GPUs and between CPUs and GPUs is done via a link called
NVLINK 2.0, developed by IBM, NVIDIA and the OpenPOWER Foundation. This link provides
up to 5x more communication bandwidth between CPUs and GPUs (when compared to
traditional PCIe Gen3) and allows for faster data transfer between memory and GPUs and
between GPUs. Complex and data hungry algorithms like the ones used in machine learning
can benefit from having these enlarged pipelines for data transfer once the amount of data
needed to be processed is many times larger than the GPU internal memory. For more
information about NVLINK 2.0 please see 2.4.5, “NVLINK 2.0” on page 28.

Each POWER9 CPU and each GPU have six NVLINK channels, called Bricks, each one
delivering up to 50 GB/s bi-directional bandwidth. These channels can be aggregated to allow
for more bandwidth or more peer to peer connections.

The Figure 2-4 on page 13 compares the POWER9 implementation of NVLINK 2.0 with
traditional processor chips using PCIe and NVLINK.

!"#!"#
$!"#

%&'$(%&'()

*+,

-$
&

.&,$/01($-')%&*
2++&'+3,'-$03.-/"-,!

-
!-
4
"
5

6$7$, 6$7$. 6$7$&

.8
93.'(

.8
93.'(

.8
93.'(

.#&$/01($6$7' /'.'
2++&'+3,'-$03.-/"-,!

'$/01($#'&$6$7' /'.'$93.'

.:$/01($#'&$(!3..'0

;-6

8'$/01($;-6$7.,'&(%..'(,$
,%$64<!"#$(!"#

*+.

-$
.

6$7' ;0%,(

64<!"#$
$!"#

+97=$$%)#3,">0'$?'1"('(
@,,$/01($*+97*=$&A,
2++&'+3,'-$03.-/"-,!

:,$/01($#'&$*+97*=$(!3..'0

Bi
ca
sC

al
de

ira
[8
]

Member of the Helmholtz Association 26 March 2018 Slide 5 34

Newell Structure Diagram

Chapter 2. System architecture 15

Draft Document for Review March 5, 2018 1:24 pm 5472ch02.fm

Figure 2-6 The Power AC922 server model 8335-GTW logical system diagram

2.2 Processor subsystem

This section introduces the latest processor in the Power Systems product family and
describes its main characteristics and features in general.

The POWER9 processor in the Power AC922 server is the latest generation of the POWER
processor family. Based on the 14 nm FinFET Silicon-On-Insulator (SOI) architecture, the
chip size is 685 mm x 685 mm and contains eight billion transistors.

2.2.1 POWER9 processor overview

The POWER9 chip has four variations, depending on the server scalability and whether their
are being used on Linux ecosystem designed servers or PowerVM ecosystem servers.

The main differences reside in the scalability, maximum core count, SMT capability, and
memory connection. Table 2-1 on page 16 compares the chip variations.

POWER9
CPU 0

POWER9
CPU 1

X Bus
64 GB/s

DDR4 DIMM

DDR4 DIMM

DDR4 DIMM

DDR4 DIMM

DDR4 DIMM

DDR4 DIMM

DDR4 DIMM

DDR4 DIMM

DDR4 DIMM

DDR4 DIMM

DDR4 DIMM

DDR4 DIMM

DDR4 DIMM

DDR4 DIMM

DDR4 DIMM

DDR4 DIMM

NVIDIA
VOLTA
GPU

NVIDIA
VOLTA

GPU

NVIDIA
VOLTA

GPU

NVIDIA
VOLTA
GPU

NVIDIA
VOLTA

GPU

NVIDIA
VOLTA

GPU

NVLink 2.0

PCIe Gen4 x8
CAPIPCIe Gen4 x16 - CAPI PCIe Gen4 x16 - CAPI

PCIe Gen4 x4

PEX

Internal Storage
Controller

2 x 1Gbps Ethernet
Broadcom BMC

Front
USB

Internal
USB

Rear
USBVGAIPMI

USB

2 x
RJ-45

PCIe Gen2 x4

PCIe Gen2 x2 PCIe Gen2 x1

PCIe Gen2 x4 PCIe Gen2 x4

PCIe Gen4 x8PCIe Gen4 x8

15 GB/s per channel

50 GB/s per channel
(Brick)

100 GB/s aggregated
bandwidth
(2 Bricks)

NVLink 2.0

Bi
ca
sC

al
de

ira
[8
]

Member of the Helmholtz Association 26 March 2018 Slide 6 34

Supplemental: JURON Login via SSH

Member of the Helmholtz Association 26 March 2018 Slide 7 34

JURON Login via SSH

Download SSH key from http://bit.ly/gtc18-openacc; OpenSSH (Linux, Mac,
Windows) and PuTTy (Windows) keys provided
Set right permissions to key: chmod 600 mykey

Unlock key with password from slip of paper
Log in to JURON
ssh -i id_train0XX train0XX@juron.fz-juelich.de

Prevent entering passphrase multiple times: Add key to SSH agent
eval "$(ssh-agent -s)"
ssh-add train0XX

Member of the Helmholtz Association 26 March 2018 Slide 8 34

http://bit.ly/gtc18-openacc

Supplemental: Summitdev Login

Member of the Helmholtz Association 26 March 2018 Slide 9 34

Using Summitdev
Summitdev: Access via RSA tokens
Login first to home.ccs.ornl.gov then to summitdev (docs)

First Connect with key on RSA token; set PIN (4-6 digits); confirm with PIN followed
by RSA Passphrase

All other Connect with PIN followed by RSA Passphrase
Checkout Lab repository
git clone -b summitdev https://gitlab.version.fz-juelich.de/herten1/gtc18-openacc.git

Load required modules
module load pgi/18.1 cuda

Allocate resources on compute nodes
bsub -nnodes 1 -W 120 -P "TRN001" -Is SHELL

Run jobs: jsrun -n1 [...] ./prog (docs)

Member of the Helmholtz Association 26 March 2018 Slide 10 34

https://www.olcf.ornl.gov/for-users/getting-started/#connecting-for-the-first-time
https://www.olcf.ornl.gov/for-users/system-user-guides/summitdev-quickstart-guide/

Supplemental: NVIDIA GPUMemory Spaces

Member of the Helmholtz Association 26 March 2018 Slide 11 34

NVIDIA GPUMemory Spaces
Location, location, location

CPUMemory

CPU

DRAM

Scheduler

. . .

Interconnect

L2

At the Beginning CPU and GPU memory very distinct, own addresses

CUDA 4.0 Unified Virtual Addressing: pointer from same address pool,
but data copy manual

CUDA 6.0 Unified Memory*: Data copy by driver, but whole data at once
(Kepler)

CUDA 8.0 Unified Memory (truly): Data copy by driver, page faults
on-demand initiate data migrations (Pascal)

Member of the Helmholtz Association 26 March 2018 Slide 12 34

NVIDIA GPUMemory Spaces
Location, location, location

CPUMemory

CPU

DRAM

Scheduler

. . .

Interconnect

L2

Unified
Virtual

Addressing

At the Beginning CPU and GPU memory very distinct, own addresses

CUDA 4.0 Unified Virtual Addressing: pointer from same address pool,
but data copy manual

CUDA 6.0 Unified Memory*: Data copy by driver, but whole data at once
(Kepler)

CUDA 8.0 Unified Memory (truly): Data copy by driver, page faults
on-demand initiate data migrations (Pascal)

Member of the Helmholtz Association 26 March 2018 Slide 12 34

NVIDIA GPUMemory Spaces
Location, location, location

CPUMemory

CPU

DRAM

Scheduler

. . .

Interconnect

L2

Unified
Memory

At the Beginning CPU and GPU memory very distinct, own addresses

CUDA 4.0 Unified Virtual Addressing: pointer from same address pool,
but data copy manual

CUDA 6.0 Unified Memory*: Data copy by driver, but whole data at once
(Kepler)

CUDA 8.0 Unified Memory (truly): Data copy by driver, page faults
on-demand initiate data migrations (Pascal)

Member of the Helmholtz Association 26 March 2018 Slide 12 34

NVIDIA GPUMemory Spaces
Location, location, location

CPUMemory

CPU

DRAM

Scheduler

. . .

Interconnect

L2

Unified
Memory

At the Beginning CPU and GPU memory very distinct, own addresses

CUDA 4.0 Unified Virtual Addressing: pointer from same address pool,
but data copy manual

CUDA 6.0 Unified Memory*: Data copy by driver, but whole data at once
(Kepler)

CUDA 8.0 Unified Memory (truly): Data copy by driver, page faults
on-demand initiate data migrations (Pascal)

Member of the Helmholtz Association 26 March 2018 Slide 12 34

Supplemental: Leveraging OpenACC Threads

Member of the Helmholtz Association 26 March 2018 Slide 13 34

Understanding Compiler Output

110, Accelerator kernel generated
Generating Tesla code
110, Generating reduction(max:error)
111, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
114, #pragma acc loop seq
114, Complex loop carried dependence of Anew-> prevents parallelization

110 #pragma acc parallel loop reduction(max:error)
111 for (int ix = ix_start; ix < ix_end; ix++)
112 {
113 // Inner loop
114 for (int iy = iy_start; iy < iy_end; iy++)
115 {
116 Anew[iy*nx+ix] = -0.25 * (rhs[iy*nx+ix] - (A[iy*nx+ix+1] + A[iy*nx+ix-1] +

A[(iy-1)*nx+ix] + A[(iy+1)*nx+ix]));↪→
117 error = fmaxr(error, fabsr(Anew[iy*nx+ix]-A[iy*nx+ix]));
118 }
119 }

Member of the Helmholtz Association 26 March 2018 Slide 14 34

Understanding Compiler Output

110, Accelerator kernel generated
Generating Tesla code
110, Generating reduction(max:error)
111, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
114, #pragma acc loop seq
114, Complex loop carried dependence of Anew-> prevents parallelization

Outer loop: Parallelism with gang and vector
Inner loop: Sequentially per thread (#pragma acc loop seq)
Inner loop was never parallelized!
Rule of thumb: Expose as much parallelism as possible

Member of the Helmholtz Association 26 March 2018 Slide 14 34

OpenACC Parallelism
3 Levels of Parallelism

Gang

$

Workers

Vector

Vector
Vector threads work in lockstep
(SIMD/SIMT parallelism)

Worker
Has 1 or more vector; workers share
common resource (cache)

Gang
Has 1 or more workers; multiple
gangs work independently from
each other

Member of the Helmholtz Association 26 March 2018 Slide 15 34

CUDA Parallelism
CUDA Execution Model

Software Hardware

Thread

Scalar
Processor

Threads executed by scalar processors (CUDA
cores)

Thread
Block Multiprocessor

Thread blocks: Executed onmultiprocessors (SM)
Do not migrate
Several concurrent thread blocks can reside on
multiprocessor
Limit: Multiprocessor resources (register file;
sharedmemory)

Grid

. . .

Device

Kernel launched as grid of thread blocks
Blocks, grids: Multiple dimensions

Member of the Helmholtz Association 26 March 2018 Slide 16 34

CUDA Parallelism
CUDA Execution Model

Software Hardware

Thread

Scalar
Processor

Threads executed by scalar processors (CUDA
cores)

Thread
Block Multiprocessor

Thread blocks: Executed onmultiprocessors (SM)
Do not migrate
Several concurrent thread blocks can reside on
multiprocessor
Limit: Multiprocessor resources (register file;
sharedmemory)

Grid

. . .

Device

Kernel launched as grid of thread blocks
Blocks, grids: Multiple dimensions

Member of the Helmholtz Association 26 March 2018 Slide 16 34

CUDA Parallelism
CUDA Execution Model

Software Hardware

Thread

Scalar
Processor

Threads executed by scalar processors (CUDA
cores)

Thread
Block Multiprocessor

Thread blocks: Executed onmultiprocessors (SM)
Do not migrate
Several concurrent thread blocks can reside on
multiprocessor
Limit: Multiprocessor resources (register file;
sharedmemory)

Grid

. . .

Device

Kernel launched as grid of thread blocks
Blocks, grids: Multiple dimensions

Member of the Helmholtz Association 26 March 2018 Slide 16 34

FromOpenACC to CUDA
map(||acc,||<<<>>>)

In general: Compiler free to do what it thinks is best
Usually
gang Mapped to blocks (coarse grain)

worker Mapped to threads (fine grain)
vector Mapped to threads (fine SIMD/SIMT)

seq No parallelism; sequential
Exact mapping compiler dependent
Performance tips

Use vector size divisible by 32
Block size: num_workers× vector_length

Member of the Helmholtz Association 26 March 2018 Slide 17 34

Declaration of Parallelism
Specify configuration of threads

Three clauses of parallel region (parallel, kernels) for changing
distribution/configuration of group of threads
Presence of keyword: Distribute using this level
Optional size: Control size of parallel entity

 OpenACC: gang worker vector

#pragma acc parallel loop gang vector
Also: worker
Size: num_gangs(n), num_workers(n), vector_length(n)

Member of the Helmholtz Association 26 March 2018 Slide 18 34

Understanding Compiler Output II

110, Accelerator kernel generated
Generating Tesla code
110, Generating reduction(max:error)
111, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */
114, #pragma acc loop seq
114, Complex loop carried dependence of Anew-> prevents parallelization

Compiler reports configuration of parallel entities
Gangmapped to blockIdx.x
Vectormapped to threadIdx.x
Worker not used

Here: 128 threads per block; as many blocks as needed
128 seems to be default for Tesla/NVIDIA

Member of the Helmholtz Association 26 March 2018 Slide 19 34

More Parallelism
Compiler Output

$ make
pgcc -DUSE_DOUBLE -Minfo=accel -fast -acc -ta=tesla:cc60 poisson2d.c
poisson2d_reference.o -o poisson2d
poisson2d.c:
main:

104, Generating create(Anew[:ny*nx])
Generating copyin(rhs[:ny*nx])
Generating copy(A[:ny*nx])

110, Accelerator kernel generated
Generating Tesla code
110, Generating reduction(max:error)
111, #pragma acc loop gang /* blockIdx.x */
114, #pragma acc loop vector(128) /* threadIdx.x */
...

Member of the Helmholtz Association 26 March 2018 Slide 20 34

Memory Coalescing
Memory in batch

Coalesced access good
Threads of warp (group of 32 contiguous threads) access adjacent words
Few transactions, high utilization

Uncoalesced access bad
Threads of warp access scattered words
Many transactions, low utilization

Best performance: threadIdx.x should access contiguously

0 1 … 31 0 1 … 31

Member of the Helmholtz Association 26 March 2018 Slide 21 34

Supplemental: MPI

Member of the Helmholtz Association 26 March 2018 Slide 22 34

Handling Multi-GPU Hosts
The alternative

Use OpenACC API to select GPU
#if _OPENACC
acc_device_t device_type = acc_get_device_type(); // Get dev type
int ngpus = acc_get_num_devices(device_type); // Get number of devs
int devicenum = rank%ngpus; // Compute active dev number based on rank
acc_set_device_num(devicenum, device_type);
#endif /*_OPENACC*/

Get rank ID
MPI API: MPI_Comm_rank()
Environment variables (int rank = atoi(getenv(...)))
OpenMPI $OMPI_COMM_WORLD_LOCAL_RANK

MVAPICH2 $MV2_COMM_WORLD_LOCAL_RANK

Member of the Helmholtz Association 26 March 2018 Slide 23 34

Further Reading

Member of the Helmholtz Association 26 March 2018 Slide 24 34

Further Resources on OpenACC

www.openacc.org: Official home page of OpenACC
developer.nvidia.com/openacc-courses: OpenACC courses, upcoming (live) and
past (recorded)
https://nvidia.qwiklab.com/quests/3: Qwiklabs for OpenACC; various levels
Book: Chandrasekaran and Juckeland OpenACC for Programmers: Concepts and
Strategies https://www.amazon.com/OpenACC-Programmers-Strategies-
Sunita-Chandrasekaran/dp/0134694287 [11]
Book: Farber Parallel Programming with OpenACC
https://www.amazon.com/Parallel-Programming-OpenACC-Rob-
Farber/dp/0124103979 [12]

Member of the Helmholtz Association 26 March 2018 Slide 25 34

www.openacc.org
developer.nvidia.com/openacc-courses
https://nvidia.qwiklab.com/quests/3
https://www.amazon.com/OpenACC-Programmers-Strategies-Sunita-Chandrasekaran/dp/0134694287
https://www.amazon.com/OpenACC-Programmers-Strategies-Sunita-Chandrasekaran/dp/0134694287
https://www.amazon.com/Parallel-Programming-OpenACC-Rob-Farber/dp/0124103979
https://www.amazon.com/Parallel-Programming-OpenACC-Rob-Farber/dp/0124103979

Glossary I

API A programmatic interface to software by well-defined functions. Short for
application programming interface. 107, 108, 158

CUDA Computing platform for GPUs from NVIDIA. Provides, among others, CUDA
C/C++. 41, 141, 142, 143, 144, 152

GCC The GNU Compiler Collection, the collection of open source compilers, among
others for C and Fortran. 40, 43

JULIA One of the two HBP pilot system in Jülich; name derived from Juelich and Glia.
11, 12

JURON One of the two HBP pilot system in Jülich; name derived from Juelich and
Neuron. 4, 5, 6, 11, 12, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27

Member of the Helmholtz Association 26 March 2018 Slide 26 34

Glossary II
MPI The Message Passing Interface, a API definition for multi-node computing. 107,

108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 122, 126, 128, 129, 131,
157, 158

NVIDIA US technology company creating GPUs. 5, 6, 7, 8, 34, 131, 140, 141, 142, 143, 144,
161

NVLink NVIDIA’s communication protocol connecting CPU↔ GPU and GPU↔ GPUwith
high bandwidth. 7, 9, 10, 13, 103, 161

OpenACC Directive-based programming, primarily for many-core machines. 2, 3, 4, 33, 34,
35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 55, 62, 63, 65, 67, 69, 74, 80, 81, 82, 83, 87, 88,
91, 92, 96, 102, 104, 105, 107, 125, 128, 129, 131, 145, 148, 152, 153, 158, 160

Member of the Helmholtz Association 26 March 2018 Slide 27 34

Glossary III

OpenMP Directive-based programming, primarily for multi-threadedmachines. 35, 36,
37, 69, 73, 76, 77, 78, 128, 129

P100 A large GPUwith the Pascal architecture from NVIDIA. It employs NVLink as its
interconnect and has fast HBM2memory. 8, 9, 10, 103, 128, 129

PAPI The Performance API, a C/C++ API for querying performance counters. 56, 57
Pascal GPU architecture from NVIDIA (announced 2016). 13, 141, 142, 143, 144, 161

perf Part of the Linux kernel which facilitates access to performance counters; comes
with command line utilities. 56, 57

PGI Compiler creators. Formerly The Portland Group, Inc.; since 2013 part of NVIDIA.
40, 43, 56, 57, 73

Member of the Helmholtz Association 26 March 2018 Slide 28 34

Glossary IV

POWER CPU architecture from IBM, earlier: PowerPC. See also POWER8. 2, 3, 4, 5, 6, 7, 9,
10, 13, 131, 133, 134, 161

POWER8 Version 8 of IBM’s POWERprocessor, available also under the OpenPOWER
Foundation. 13, 128, 129, 161

Tesla The GPU product line for general purpose computing computing of NVIDIA. 8

Volta GPU architecture from NVIDIA (announced 2017). 13

CPU Central Processing Unit. 2, 3, 4, 7, 8, 9, 10, 13, 40, 69, 84, 85, 86, 100, 103, 128,
129, 141, 142, 143, 144, 161

Member of the Helmholtz Association 26 March 2018 Slide 29 34

Glossary V

GPU Graphics Processing Unit. 2, 3, 4, 5, 6, 7, 8, 9, 10, 29, 30, 31, 32, 33, 40, 42, 80, 81,
82, 84, 85, 86, 87, 89, 103, 112, 113, 114, 115, 116, 117, 118, 119, 120, 128, 129,
131, 140, 141, 142, 143, 144, 158, 161

HBP Human Brain Project. 11, 12, 161

SM Streaming Multiprocessor. 9, 13, 128, 129
SMT Simultaneous Multithreading. 9

Member of the Helmholtz Association 26 March 2018 Slide 30 34

References I

[7] The Next Platform. Power9 To The People. POWER9 Performance Data. URL:
https://www.nextplatform.com/2017/12/05/power9-to-the-people/.

[8] Alexandre Bicas Caldeira. IBM Power System AC922: Introduction and Technical Overview.
IBM Redbooks. URL:
http://www.redbooks.ibm.com/redpieces/pdfs/redp5472.pdf (pages 134,
135).

[10] Donald E. Knuth. “Structured Programming with Go to Statements”. In: ACM Comput.
Surv. 6.4 (Dec. 1974), pp. 261–301. ISSN: 0360-0300. DOI: 10.1145/356635.356640.
URL: http://doi.acm.org/10.1145/356635.356640 (pages 56, 57).

Member of the Helmholtz Association 26 March 2018 Slide 31 34

https://www.nextplatform.com/2017/12/05/power9-to-the-people/
http://www.redbooks.ibm.com/redpieces/pdfs/redp5472.pdf
https://doi.org/10.1145/356635.356640
http://doi.acm.org/10.1145/356635.356640

References II

[11] Sunita Chandrasekaran and Guido Juckeland. OpenACC for Programmers: Concepts and
Strategies. Addison-Wesley Professional, 2017. ISBN: 0134694287. URL:
https://www.amazon.com/OpenACC-Programmers-Strategies-Sunita-
Chandrasekaran/dp/0134694287 (page 160).

[12] Rob Farber. Parallel Programming with OpenACC. Morgan Kaufmann, 2016. ISBN:
0124103979. URL: https://www.amazon.com/Parallel-Programming-OpenACC-
Rob-Farber/dp/0124103979 (page 160).

Member of the Helmholtz Association 26 March 2018 Slide 32 34

https://www.amazon.com/OpenACC-Programmers-Strategies-Sunita-Chandrasekaran/dp/0134694287
https://www.amazon.com/OpenACC-Programmers-Strategies-Sunita-Chandrasekaran/dp/0134694287
https://www.amazon.com/Parallel-Programming-OpenACC-Rob-Farber/dp/0124103979
https://www.amazon.com/Parallel-Programming-OpenACC-Rob-Farber/dp/0124103979

References: Images, Graphics I

[1] SpaceX. SpaceX Launch. Freely available at Unsplash. URL:
https://unsplash.com/photos/uj3hvdfQujI.

[2] Forschungszentrum Jülich. Hightechmade in 1960: A view into the control room of DIDO.
URL: http://historie.fz-juelich.de/60jahre/DE/Geschichte/1956-
1960/Dekade/_node.html (pages 5, 6).

[3] Forschungszentrum Jülich. Forschungszentrum Bird’s Eye. (Pages 5, 6).

[4] Forschungszentrum Jülich. JUQUEEN Supercomputer. URL:
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/
JUQUEEN/JUQUEEN_node.html (pages 5, 6).

Member of the Helmholtz Association 26 March 2018 Slide 33 34

https://unsplash.com/photos/uj3hvdfQujI
http://historie.fz-juelich.de/60jahre/DE/Geschichte/1956-1960/Dekade/_node.html
http://historie.fz-juelich.de/60jahre/DE/Geschichte/1956-1960/Dekade/_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/JUQUEEN_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/JUQUEEN_node.html

References: Images, Graphics II

[5] Rob984 via Wikimedia Commons. Europe orthographic Caucasus Urals boundary (with
borders). URL: https://commons.wikimedia.org/wiki/File:
Europe_orthographic_Caucasus_Urals_boundary_(with_borders).svg
(pages 5, 6).

[6] IBM AIXpert Blog. IBM Minsky Picture. URL:
https://www.ibm.com/developerworks/community/blogs/aixpert/entry/
OpenPOWER_IBM_S822LC_for_HPC_Minsky_First_Look?lang=en (page 8).

[9] Setyo Ari Wibowo. Ask. URL: https://thenounproject.com/term/ask/1221810.

Member of the Helmholtz Association 26 March 2018 Slide 34 34

https://commons.wikimedia.org/wiki/File:Europe_orthographic_Caucasus_Urals_boundary_(with_borders).svg
https://commons.wikimedia.org/wiki/File:Europe_orthographic_Caucasus_Urals_boundary_(with_borders).svg
https://www.ibm.com/developerworks/community/blogs/aixpert/entry/OpenPOWER_IBM_S822LC_for_HPC_Minsky_First_Look?lang=en
https://www.ibm.com/developerworks/community/blogs/aixpert/entry/OpenPOWER_IBM_S822LC_for_HPC_Minsky_First_Look?lang=en
https://thenounproject.com/term/ask/1221810

	Introduction
	OpenPOWER
	Minsky, POWER8
	Newell, POWER9
	Using JURON

	OpenACC Introduction
	About OpenACC
	Modus Operandi
	*openacc's Models
	Parallelization Workflow

	First Steps in OpenACC
	Example Program
	Identify Parallelism
	Parallelize Loops

	OpenACC on the GPU
	Compiling on GPU
	Data Locality

	OpenACC on Multiple GPUs
	MPI 101
	Jacobi MPI Strategy
	Asynchronous

	Conclusions, Summary
	Appendix
	Appendix
	List of Tasks
	Supplemental: POWER9 Structure Diagrams
	Supplemental: JURON Login via SSH
	Supplemental: Summitdev Login
	Supplemental: NVIDIA GPU Memory Spaces
	Supplemental: Leveraging OpenACC Threads
	Supplemental: MPI
	Further Reading
	Glossary
	References

